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Physics and shear 
Cause: 

Effect: 

(e1,e2)  derivatives of gravitational lensing potential 

= a b θ 



Life in (e1,e2) space 

Measure (e1,e2) of 
galaxy images  

 

Estimators of 
induced 

gravitational shear 

e = 0.25, 0.5, 0.8 



Wish list? 

•  Push every image toward a known fit-able 
shape, while still preserving eccentricity 
information 

•  Take advantage of the properties of pixel 
by pixel noise (whiter shade of pale) 

Can we find an image processing 
technique that will let us 



Convolutions/Correlations 

• Repeated auto-correlation/convolution 
converges toward a Gaussian, while 
preserving variance ratios 

•  Auto-correlation of white noise is a 
predictable δ() function 

Two interesting, suggestive 
mathematical facts:  
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Image processing, first order 



Image processing, first order 
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Successive autocorrelation 
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Main Message: 

These are hard to fit, requiring a large “model space”"

These are easy to fit, requiring a small “model space”"



Example: Poor Man’s Barred Spiral 

A galaxy-like image 
made from the sum of 
two Gaussians 

Non-elliptical objects 
have no single, 
unambiguous intrinsic 
ellipticity 

But all we require is a 
shear estimator 



Shear Estimators 
Take any image, and 
rotate it in many steps 
from 0-π 

Shear each rotated 
image by the same 
given amount 

A good shear estimator 
for each image, returns 
the induced shear when 
averaged over all 
rotations 



Shear recovery 
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Each rotated image was sheared by {e1,e2}={0.1,0}, and 
the circle-averaged shear estimator recovers that 



The challenge: noise and PSF 

Two true facts:!

 (1) Any auto-correlate of an image has the same 
shear transformation properties as images do 

 (2) If an observed image is the convolution of an 
original and a PSF, then its autocorrelate is the 
convolution of the original image autocorrelate 
and the PSF autocorrelate  



SêN = 10000 PSF = 1 pixel

Original, 
rotated & 
sheared 

Second 
autocorrelate 

Second 
autocorrelate 

Add PSF and 
noise 



SêN = 100 PSF = 1 pixel



SêN = 30 PSF = 1 pixel



SêN = 20 PSF = 1 pixel



SêN = 15 PSF = 1 pixel



SêN = 10000 PSF = 2 pixel



SêN = 15 PS F= 2 pixel



“Quickie” PSF correction 

Fit central “cap” of 
second autocorrelate 

with elliptical form, 
extract (e,θ,scale)"

Convert (e,θ,scale) to 
Gaussian-equivalent 
“faux-variance” matrix"

Subtract moments of 
PSF autocorrelate from 

faux-variance"

Translate faux-variance 
back into equivalent 
ellipticity (e,θ,scale) "

Report e as shear 
estimator"

No PSF 



SêN = 10000 PSF = 1 pixel

Black: No PSF applied 
Red: PSF applied and corrected 
Green: PSF applied but not corrected 
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SêN = 30 PSF = 1 pixel

Black: No PSF applied 
Red: PSF applied and corrected 
Green: PSF applied but not corrected 
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SêN = 30 PSF = 1 pixel
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Image:PMBS , PSF:1pix Shear=80.1,0.< SêN=30. N=30
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Summary 
•  In principle the autocorrelate has the same shear 

transform and PSF properties as an image 

•  In practice the autocorrelate results in a smooth 
profile, readily fit-able and preserving ellipticity 
even in the worst noise conditions  

•  Excellent noise resistance for shear estimator in 
absence of PSF 

•  With “quickie” faux-variance scheme, see very 
good PSF correction performance right out of the 
box before any optimizations or corrections 



Central “cap” preserves ellipticity 
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Fit 
Here 



Fitting > Moments 
How do we go from an image 
to measures of (e1,e2) 
estimators? 

Two basic approaches:  

Moments: e.g. covariance matrix 
•  No assumption of detailed galaxy shape 
•  Bias from clipping in tails 
•  Bad noise performance, or use weighting (unknown, tricky)  

Fitting: with parameterized form 
•  Works on any piece of image 
•  Better noise resistance; but potential noise bias 
•  True shapes unknown; noise effect depends on shape (Great3) 



Four experiments: 

•  Look at three very different images with 
same eccentricity, see how noise 
performance varies 

•  Look at noise behavior at high ellipticity 
• Using Gaussian images, look at resistance 

to tail clipping 
•  Shear an assortment of Gaussians, look at 

shear recovery on average  

Using auto-correlation/convolution + fitting technique:"



E1: Meet our contestants 

DISH NGC4414 RMN1970 



E1: Meet our contestants 

DISH NGC4414 RMN1970 



Image processing, second order 
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Image processing, first order 


